Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Bioorg Chem ; 147: 107399, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38678778

RESUMEN

Two pairs of enantiomers (1a-2b), namely (±)-alterpyrone F and (±)-alterpyrone G, along with a rare benzothiazole meroterpenoid granulathiazole A (3, GA), and two undescribed compounds called respectively granulahydeoate (4) and granulaone (5), were obtained from the co-cultivation of Alternaria brassicicola and Penicillium sp. HUBU0120. Exhaustive analyses of NMR, single crystal XRD, Mo2(OAc)4-induced circular dichroism data, and a modified Mosher's method distinguished the absolute configurations of isolates. Bioactive evaluations exhibited that GA possessed promising anti-PD activity in both in vitro and in vivo PD models viz. 6-OHDA-induced SH-SY5Y cells and 6-OHDA-induced zebrafish, respectively. Moreover, our research demonstrated that ferroptosis activated by 6-OHDA was mitigated in PD models after treated with GA. Extensive molecular mechanism studies in PD-modelled cells manifested that GA attenuated the decreased expressions of SLC7A11, GPX4, and FSP-1, and the increased level of ACSL4 via activating Nrf2/HO-1 pathway as well as ameliorated the accumulation of α-synuclein.

2.
J Agric Food Chem ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607803

RESUMEN

The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.

3.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608899

RESUMEN

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Asunto(s)
Ansiedad , Microbioma Gastrointestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ondas de Radio/efectos adversos , Inflamasomas/metabolismo , Neuronas , Masculino , Conducta Animal/efectos de la radiación
4.
J Exp Clin Cancer Res ; 43(1): 72, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454445

RESUMEN

BACKGROUND: The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS: Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS: Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS: Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Monocitos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Linfocitos T/metabolismo , Inmunoterapia , Microambiente Tumoral , Calgranulina B/metabolismo
5.
Ecotoxicol Environ Saf ; 272: 116019, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295734

RESUMEN

Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Humanos , Plaguicidas/química , Adsorción , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Suelo/química , Biodiversidad
6.
Biomaterials ; 305: 122463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232643

RESUMEN

The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Microambiente Tumoral , Inmunoterapia , Neoplasias/tratamiento farmacológico , Nanomedicina
7.
Bioorg Chem ; 142: 106955, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924754

RESUMEN

Three new ergosterol derivatives brassisterol A-C (1-3) and two new epimeric bicycle-lactones brassictones A and B (4 and 5), were isolated from the co-cultivation of Alternaria brassicicola and Penicillium granulatum. The absolute configurations of these isolates were confirmed by extensive NMR spectra, TD-DFT ECD calculation, and the single crystal XRD data analysis. Amongst the metabolites, compound 1 exhibited potential anti-Parkinson's disease activity in both MPTP-induced zebrafish and MPP+-induced SH-SY5Y cells. Molecular mechanism studies in vitro showed that 1 attenuated the increase of α-synuclein, NLRP3, ASC, caspase-1, IL-1ß, IL-18, and GSDMD expression in the MPP+ induced PD model. Molecular docking in silico simulations exhibited that 1 was well accommodated to one of the binding pockets of NLRP3 8ETR in an appropriate conformation via forming typical hydrogen bonds as well as possessing a high negative binding affinity (-8.97 kcal/mol). Thus, our work suggested that 1 protected dopaminergic cell from neuroinflammation via targeting NLRP3/caspase-1/GSDMD signaling pathway.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Neuroblastoma , Animales , Humanos , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Hongos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
8.
iScience ; 26(12): 108468, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38077136

RESUMEN

To investigate whole-slide-level prediction in the field of artificial intelligence identification of dMMR/pMMR from hematoxylin and eosin (H&E) in colorectal cancer (CRC), we established a segmentation-based dMMR/pMMR deep learning detector (SPEED). Our model was approximately 1,700 times faster than that of the classification-based model. For the internal validation cohort, our model yielded an overall AUC of 0.989. For the external validation cohort, the model exhibited a high performance, with an AUC of 0.865. The human‒machine strategy further improved the model performance for external validation by an AUC up to 0.988. Our whole-slide-level prediction model provided an approach for dMMR/pMMR detection from H&E whole slide images with excellent predictive performance and less computer processing time in patients with CRC.

9.
Proc Natl Acad Sci U S A ; 120(52): e2314193120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109549

RESUMEN

Currently, monoclonal antibodies (MAbs) targeting the SARS-CoV-2 receptor binding domain (RBD) of spike (S) protein are classified into seven classes based on their binding epitopes. However, most of these antibodies are seriously impaired by SARS-CoV-2 Omicron and its subvariants, especially the recent BQ.1.1, XBB and its derivatives. Identification of broadly neutralizing MAbs against currently circulating variants is imperative. In this study, we identified a "breathing" cryptic epitope in the S protein, named as RBD-8. Two human MAbs, BIOLS56 and IMCAS74, were isolated recognizing this epitope with broad neutralization abilities against tested sarbecoviruses, including SARS-CoV, pangolin-origin coronaviruses, and all the SARS-CoV-2 variants tested (Omicron BA.4/BA.5, BQ.1.1, and XBB subvariants). Searching through the literature, some more RBD-8 MAbs were defined. More importantly, BIOLS56 rescues the immune-evaded antibody, RBD-5 MAb IMCAS-L4.65, by making a bispecific MAb, to neutralize BQ.1 and BQ.1.1, thereby producing an MAb to cover all the currently circulating Omicron subvariants. Structural analysis reveals that the neutralization effect of RBD-8 antibodies depends on the extent of epitope exposure, which is affected by the angle of antibody binding and the number of up-RBDs induced by angiotensin-converting enzyme 2 binding. This cryptic epitope which recognizes non- receptor binding motif (non-RBM) provides guidance for the development of universal therapeutic antibodies and vaccines against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Anticuerpos Monoclonales , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
10.
EClinicalMedicine ; 63: 102175, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37680942

RESUMEN

Background: Glypican-3 (GPC3) is a well-characterized hepatocellular carcinoma (HCC)-associated antigen and a promising target for HCC treatment. CT017 CAR T cells were engineered to co-express CAR-GPC3 and runt-related transcription factor 3 (RUNX3), which triggers CD8+ T-cell infiltration into the cancer microenvironment. Methods: This single-center, single-arm, open-label, phase I clinical study enrolled heavily pretreated patients with GPC3-positive HCC between August 2019 and December 2020 (NCT03980288). Patients were treated with CT017 CAR T cells at a dose of 250 × 106 cells. The primary objective was to assess the safety and tolerability of this first-in-human product. Findings: Six patients received 7 infusions (one patient received 2 infusions) at the 250 × 106 cells dose. Three patients received CT017 monotherapy, and three patients received CT017-tyrosine kinase inhibitor (TKI) combination therapy at the first infusion. One patient received CT017-TKI combination therapy at the second infusion after CT017 monotherapy. All patients experienced cytokine release syndrome (CRS), with 50% (3/6) at Grade 2, 50% (3/6) at Grade 3, and all events resolved after treatment. No immune effector cell-associated neurotoxicity syndrome was observed. Dose escalation was not performed due to the investigator's decision regarding safety. Of six evaluable patients, one achieved partial response and two had stable disease for a 16.7% objective response rate, 50% disease control rate, 3.5-month median progression-free survival, 3.2-month median duration of disease control, and 7.9-month median overall survival (OS) with 7.87-month median follow-up. The longest OS was 18.2 months after CT017 infusion. Interpretation: Current preliminary phase I data showed a manageable safety profile and promising antitumor activities of CT017 for patients with advanced HCC. These results need to be confirmed in a robust clinical trial. Funding: This study was funded by CARsgen Therapeutics Co., Ltd.

11.
Bioorg Chem ; 139: 106701, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37393781

RESUMEN

The most studied epipolythiodioxopiperazine (ETP) alkaloids, such as chetomin, gliotoxin and chaetocin, were reported to exert their antitumor effects through targeting HIF-1α. Chaetocochin J (CJ) is another ETP alkaloid, of which the effect and mechanism on cancer are not fully elucidated. Considering the high incidence and mortality of hepatocellular carcinoma (HCC) in China, in the present study, using HCC cell lines and tumor-bearing mice as models, we explored the anti-HCC effect and mechanism of CJ. Particularly, we investigated whether HIF-1α is related to the function of CJ. The results showed that, both under normoxic and CoCl2 induced-hypoxic conditions, CJ in low concentrations (<1 µM) inhibits the proliferation, induces G2/M phase arrest, leading to the disorder of metabolism, migration, invasion, and caspase-dependent apoptosis in HepG2 and Hep3B cells. CJ also showed anti-tumor effect on a nude xenograft mice model without significant toxicity. Moreover, we demonstrated that the key to CJ's function is mainly associate with its inhibition of PI3K/Akt/mTOR/p70S6K/4EBP1 pathway independent of hypoxia, and it also could suppress the expression of HIF-1α as well as disrupt the binding of HIF-1α/p300 and subsequently inhibits the expression of its target genes under hypoxic condition. These results demonstrated that CJ possessed a hypoxia-independent anti-HCC effects in vitro and in vivo, which was mainly attributable to its inhibition on the upstream pathways of HIF-1α.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Hipoxia , Línea Celular Tumoral , Proliferación Celular
12.
Pest Manag Sci ; 79(12): 4784-4794, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37471098

RESUMEN

BACKGROUND: Yield loss and toxin contamination caused by wheat Fusarium head blight (FHB) have always been a worldwide concern. Cultivating disease-resistant varieties and fungicide application are effective measures to control FHB. The comprehensive control technology system for FHB and toxin contamination of wheat in Anhui Province needs further improvement. This study compared the control efficacy of different wheat varieties, fungicides and application times on wheat FHB and deoxynivalenol (DON) contamination, and the dynamic change of DON accumulation after application. RESULTS: Among the 93 main wheat varieties in Anhui Province, the disease-resistant and low-toxic wheat variety "Ningmai 26" was more suitable for planting in the central part of Anhui Province. At the same time, "Yangmai 22" was used for subsequent experiments. The field efficacy trials of different fungicides showed that 30% prothioconazole oil dispersion (OD) had the highest control efficacy on FHB and DON contamination, reaching 94.33 and 77.49%, respectively. The study on the optimum application time of prothioconazole showed that the 0-20% flowering stage was the key point of DON control. The survey of the dynamic changes of DON accumulation showed that prothioconazole could significantly reduce the level of DON accumulation while inhibiting the accumulation rate of DON. At the same time, the control fungicide carbendazim increased the level of DON contamination. CONCLUSION: This study will provide excellent germplasm resources for cultivating disease-resistant and low-toxic wheat varieties, and provide a theoretical reference for establishing a collaborative prevention and control system of disease control and toxin reduction. © 2023 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Fusarium , Tricotecenos , Triticum , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control
13.
World J Psychiatry ; 13(5): 191-202, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37303933

RESUMEN

BACKGROUND: The teaching mode of fitness exercise prescriptions for college students in physical education conforms to the scientific principles and rules of fitness, which can adapt to the characteristics of students' individual physiological functions and stimulate their interest in learning. AIM: To analyze the effect of prescribed exercise teaching on the sports quality and mental health of college students. METHODS: The participants of the study were 240 students in our class of 2021, of which 142 were men and 98 were women. The 240 students were randomly divided into an experimental group using the exercise prescription teaching model and a control group using the conventional teaching model. The experimental and control groups were divided into four classes of 30 students each. The teaching activities of the two teaching mode groups were strictly controlled, and the same tests were used before and after the experiment to test the subjects' exercise quality (in-cluding standing long jump, 50 m race, 800 m race, sit-ups, sit-and-reach), physical form (including height, weight, Ketorolai index), cardiopulmonary function (including heart rate, blood pressure, spirometry, 12-min running distance, maximum oxygen intake) and mental health (SCL-90, including somatization, obsessive-compulsive, interpersonal, depression, anxiety, hostility, phobia, paranoia, psychotic symptoms) to understand the effects of the exercise prescription teaching mode on students' physical and mental health status. RESULTS: There were differences in the exercise scores of standing long jump, 50 m, 800 m/1000 m running, sit-ups, and sit-and-reach in the experimental group after the experiment compared with those before the experiment, and the above indices of the experimental group were different from those of the control group after the experiment (P < 0.05). There were differences in body weight and Ketorolai index in the experimental group after the experiment compared to those before the experiment, and the indices of the experimental group were also different from those of the control group after the experiment (P < 0.05). After the experiment, there were differences in spirometry, 12-min running distance, and maximum oxygen intake in the experimental group compared to those before the experiment, and the indices of the experimental group were also different from those of the control group after the experiment (P < 0.05). After the experiment, the indicators of somatization, interpersonal sensitivity, depression, anxiety, and hostility in the experimental group were different from those in the pre-experimental group, and the indexes of the experimental group were also different from those of the control group after the experiment (P < 0.05). CONCLUSION: Exercise prescription teaching can mobilize college students' consciousness, enthusiasm, and initiative; expand personalities; enhance physical fitness and improve their mental health more than the conventional fitness exercise prescription teaching method.

14.
Environ Sci Pollut Res Int ; 30(28): 72389-72397, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37170049

RESUMEN

Tembotrione is a new triketone HPPD herbicide widely used in Europe, USA, and other areas. However, tembotrione is moderately to highly toxic to algae and daphnia in aquatic ecosystems. In this study, hydrolysis, photolysis, soil degradation, soil adsorption, and bioaccumulation of tembotrione were systematically studied. Hydrolysis experiment revealed that tembotrione was stable in acidic, neutral, and alkaline conditions with half-lives of 231-289 days. The photolysis half-lives of tembotrione were 112-158 days and 76-107 days in pH 4, 7, 9 buffer solutions and on three soils surface, respectively, which demonstrated that tembotrione could be persisted in soil and water. Meanwhile, tembotrione Kfoc was 128-196 mL/g, indicating that tembotrione was not easily adsorbed to soil, and the adsorption capacity increased with the decrease in pH. The half-lives of tembotrione in the test soil were 32-48 days, and high organic matter soil is conducive to microbial activity and accelerates the degradation of tembotrione. Moreover, bioaccumulation experiment demonstrated that tembotrione with a BCF of 0.664 to 0.724 had a low risk of exposure to zebrafish. This study is very helpful for the evaluation environmental risk and safe use of tembotrione.


Asunto(s)
Herbicidas , Animales , Herbicidas/toxicidad , Adsorción , Ecosistema , Pez Cebra/metabolismo , Bioacumulación , Suelo
15.
J Colloid Interface Sci ; 643: 350-359, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37080042

RESUMEN

Rational design of low-cost and high-efficiency electrocatalysts for hydrogen evolution reaction (HER) is critical for scalable and sustainable hydrogen production from economical water-alkali splitting. Herein, density functional theory (DFT) calculations reveal that coupling NiOx and CoP could effectively boost overall HER kinetics through lowing the H2O dissociation barrier, accelerating the OH* transfer process, and providing the rapid H* migration kinetics as well as the appropriate H* energetics. Based on these findings, we successfully prepared a three-dimensional (3D) self-supported electrode of ultrathin CoP nanosheets directly grown on the surface-oxidized Ni nanotube arrays via a simple and scalable electrochemical synthesis method. As expected, such a heterostructure electrode exhibits superior alkaline HER performance with low overpotentials of 51 and 164 mV to drive the current densities of 10 and 500 mA cm-2, respectively, outperforming most of the efficient alkaline HER electrocatalysts.

16.
Sci Total Environ ; 874: 162585, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36870510

RESUMEN

Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 µg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 µg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 µg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.


Asunto(s)
Insecticidas , Violación , Abejas , Animales , Malatión/toxicidad , Malatión/química , Insecticidas/toxicidad , Insecticidas/análisis , Proteoma , Cromatografía Liquida , Espectrometría de Masas en Tándem
17.
Cell Rep Med ; 4(4): 100987, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36990096

RESUMEN

Immunometabolism in the tumor microenvironment (TME) and its influence on the immunotherapy response remain uncertain in colorectal cancer (CRC). We perform immunometabolism subtyping (IMS) on CRC patients in the training and validation cohorts. Three IMS subtypes of CRC, namely, C1, C2, and C3, are identified with distinct immune phenotypes and metabolic properties. The C3 subtype exhibits the poorest prognosis in both the training cohort and the in-house validation cohort. The single-cell transcriptome reveals that a S100A9+ macrophage population contributes to the immunosuppressive TME in C3. The dysfunctional immunotherapy response in the C3 subtype can be reversed by combination treatment with PD-1 blockade and an S100A9 inhibitor tasquinimod. Taken together, we develop an IMS system and identify an immune tolerant C3 subtype that exhibits the poorest prognosis. A multiomics-guided combination strategy by PD-1 blockade and tasquinimod improves responses to immunotherapy by depleting S100A9+ macrophages in vivo.


Asunto(s)
Neoplasias Colorrectales , Multiómica , Humanos , Receptor de Muerte Celular Programada 1 , Inmunoterapia , Macrófagos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral
18.
Gastroenterol Rep (Oxf) ; 11: goac088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751477

RESUMEN

Background: Limited second-line therapeutic options are available for metastasis pancreatic cancer (mPC). We aimed to explore the efficacy and safety of oxaliplatin plus irinotecan (IROX) in mPC patients. Methods: This is an open-label, Phase 2, randomized study of mPC patients (aged 18-75 years) who failed when using gemcitabine plus S-1 as first-line therapy. Block randomization with a block size of four was used to randomly assign patients (1:1) between October 2015 and December 2017 to receive either IROX (oxaliplatin 85 mg/m2 and irinotecan 160 mg/m2) or irinotecan monotherapy (irinotecan 180 mg/m2) until disease progression, unacceptable adverse events, or consent withdrawal. The primary end point was overall survival, and the secondary end points were progression-free survival, overall response rate, and adverse event rate. Results: A total of 74 patients were enrolled in this study, including 44 males and 30 females, with an average age of 61 years. The median overall survival was 10.2 and 6.7 months (adjusted hazard ratio [HR], 0.7; 95% confidence interval [CI], 0.4-1.2; P = 0.20) and the median progression-free survival was 5.1 and 2.3 months (adjusted HR, 0.4; 95% CI, 0.2-0.6; P < 0.01) in the IROX group and irinotecan group, respectively. The overall response rates were 18.4% (7/38) in the IROX group and 5.5% (2/36) in the irinotecan group (P = 0.06). Grade 3-4 adverse events occurred in 34% (13/38) of patients in the IROX group and 19% (7/36) of patients in the irinotecan group (P = 0.15). Conclusions: IROX had no significant survival benefit over irinotecan monotherapy in our study. However, IROX reduced the risk of disease progression by 60%, with acceptable toxicity.

19.
Appl Opt ; 62(3): 683-687, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36821272

RESUMEN

We demonstrated the optical frequency transfer over a 96 km urban business network in Shanghai. The key factors affecting the optical frequency transmission system, such as fiber link quality, feedback compensation strength, and out-of-loop fiber temperature variation, are studied for the urban fiber link characteristics. The effective suppression technique of complex urban fiber link noise with different feedback compensation parameters is studied. With active phase noise suppression, the optical frequency stability can reach 1.9×10-16 at 1 s and 2.2×10-18 at 10,000 s over a 96 km urban fiber link. This work potentially plays an important role in optical clock frequency comparison, and it makes a good foundation for future research on long-distance optical frequency transfer over an urban business network.

20.
J Agric Food Chem ; 71(3): 1426-1433, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630283

RESUMEN

Fluindapyr is a novel chiral succinate dehydrogenase inhibitor used to control fungal diseases. The enantioselective effects of fluindapyr in paddy ecosystems are unknown. We developed a new chiral determination method of fluindapyr using ultrahigh performance liquid chromatography tandem mass spectrometry. The absolute configuration of the fluindapyr enantiomers was identified by an electron circular dichroism model. A new husk-based biochar material was used to optimize and establish a QuEchERs method for paddy soil determination. Under anaerobic conditions, the half-lives of R-fluindapyr and S-fluindapyr in paddy soil were 69.6 and 101.8 days, respectively. R-fluindapyr degraded more rapidly than S-fluindapyr. S-fluindapyr was 87.8 times more active against Rhizoctonia solani than R-fluindapyr. The enantioselective bioactivity mechanism was illustrated by molecular docking between the fluindapyr enantiomers and SDH of R. solani. The binding powers of R-fluindapyr and S-fluindapyr to proteins were -32.12 and - 42.91 kcal/mol, respectively. This study reports the stereoselectivity of fluindapyr about determination, degradation, bioactivity, and its mechanism. It provides a foundation for an in-depth study of fluindapyr at the enantiomer level.


Asunto(s)
Fungicidas Industriales , Contaminantes del Suelo , Fungicidas Industriales/química , Ecosistema , Estereoisomerismo , Simulación del Acoplamiento Molecular , Contaminantes del Suelo/química , Espectrometría de Masas en Tándem/métodos , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...